Nombres réels - Exercices

Ensembles de nombres

- 1 Indiquer si les affirmations suivantes sont fausses ou vraies et justifier.
- **a.** $2 \in \mathbb{Z}$
- **b.** $-3 \in \mathbb{N}$ **c.** $\frac{2}{3} \in \mathbb{D}$ **e.** $1,27 \in \mathbb{R}$ **f.** $\mathbb{N} \subset \mathbb{Q}$

- **d.** $-\frac{39}{3} \in \mathbb{D}$

- 2 Donner le plus petit ensemble de nombres auquel appartiennent chacun des nombres suivants.

- **a.** -2 **b.** $\frac{2\pi}{4\pi}$ **c.** $(\sqrt{2})^2 7$ **d.** $\frac{3}{2}(21 18)$ **e.** $\frac{7}{3} (-\frac{2}{3})$ **f.** $-\frac{3^{80}}{4}$
- 3 Vrai ou faux ? Justifier.
- a. Le produit de deux rationnels est un rationnel.
- **b.** Le produit de deux irrationnels est un irrationnel.

Intervalles

4 Indiquer par le symbole ∈ ou ∉ si les réels donnés appartiennent aux intervalles I_1 , I_2 , I_3 , I_4 , I_5 .

	1	-4	-2	π	$\sqrt{2}$	1,99	2,4	$\frac{-30}{7}$
$I_1 = [2; 10[$								
$I_2 =]-\infty; 2[$								
$I_3 = \left] -3; \frac{12}{5} \right[$								
$I_4 = \left[-\frac{14}{3}; \frac{35}{11} \right]$								
$I_5 = [3; +\infty[$								

- 5 Pour chacune des questions suivantes, entourer la seule réponse correcte.
- 1. L'ensemble des réels x tels que $x \ge 5$ est
 - **a.**] $-\infty$; 5]
- **b.** $[5; +\infty[$
- **c.** $]5; +\infty[$
- 2. L'ensemble des réels x tels que $-2 \le x < 1$ est
 - **a.** [-2; 1]
- **b.**]-2;1]
- **c.** [-2; 1[
- 3. L'ensemble des réels x vérifiant x > 0 est
 - **a.** $[0; +\infty[$
- **b.** $[0; +\infty]$
- **c.** $]0; +\infty[$
- **4.** L'ensemble des réels vérifiant $x \ge 2$ et x < 4 est
 - **a.** [2; 4]
- **b.** [4; 2]
- **c.** [2; 4[

- 6 Même consigne.
- 1. Le réel $\frac{1}{2}$ appartient à
 - **a.** {0; 1}
- **b.** [0; 0,33]
- **c.**]0; 1[
- 2. L'ensemble des réels compris entre 2 et -3 inclus se note
 - **a.** [-3; 2]
- **b.** [2; -3] **c.**] 3; 2[
- 7 Compléter le tableau suivant.

I	J	$I \cap J$	$I \cup J$
[-2; 4[[3; 5]		
[2; 8]] - 1; 5[
] – ∞; 0]	[0; +∞[
]4; 7]]-1; 2]		

- 8 Compléter, en utilisant les intervalles.
- **a.** $x \notin [-2; 4]$ si et seulement si $x \in ...$
- **b.** $x \neq 4$ si et seulement si $x \in ...$
- **c.** $x \neq 2$ et $x \neq 5$ si et seulement si $x \in ...$

Encadrements, inégalités

- 9 Donner un encadrement à 0,1 près puis à 0,01 près des réels $\frac{7}{9}$; $\frac{31}{7}$; $-\frac{5}{3}$; $4-\sqrt{7}$ et $\frac{\sqrt{2}+17}{4-\sqrt{11}}$.
- 10 Donner une valeur approchée à 0,1 près puis à 0,01 près des réels $\frac{5}{7}$; 0,1235 ; $\sqrt{2}$; $-\frac{14}{17}$ et $\frac{1}{\sqrt{2}-3}$.
- 11 Compléter avec un intervalle.
- **a.** $x \in [2; 10]$ si et seulement si $3x \in ...$
- **b.** $x \in [-1; 3]$ si et seulement si $5 x \in ...$
- **c.** $x \in [-2; 4]$ si et seulement si $3x 2 \in ...$
- **d.** $x \in [3; +\infty[$ si et seulement si $2 x \in ...$
- **e.** $x \in ...$ si et seulement si $3x \in [12; 35]$
- **f.** $x \in ...$ si et seulement si $4 x \in [-2; 3]$

Valeur absolue

- 12 Sans utiliser la calculatrice, écrire sans valeur absolue.
- **a.** |-5|**d.** $|-253^7|$
- **b.** $|125^2 97^2|$ **c.** $|5^2 48^2|$ **e.** $|\pi - 4|$ **f.** $|\sqrt{5} - 2|$
- **g.** $|10^{-3} 10^{-7}|$
- **h.** $|10^{-30} 10^{-5}|$
- 13 Pour chacune des trois inégalités suivantes, donner un entier la vérifiant et un entier ne la vérifiant pas.
- **a.** $|2x-3| \le 4$ **b.** $|x-7| \ge 3$
- c. |5 x| < 1
- 14 Résoudre les équations suivantes.
- **a.** |x| = 1.13
- **b.** |x| = 0
- **c.** $|x| = 3 \sqrt{11}$
- **d.** |x| = 3|x| 2
- 15 Résoudre les équations suivantes.
- **a.** |x-3|=1
- **b.** |x 1,3| = 3,5
- **c.** |x + 3| = 10
- **d.** |x + 2,1| = 5
- **e.** |3x 2| = 7
- **f.** |5 x| = 2
- **16** Résoudre les inéquations suivantes.
- **a.** $|x 4| \le 5$
- **b.** |x + 3| < 7
- c. $|2x 1| \le 1$
- **d.** |x+2| > 4
- e. |4x 1| < 4.2
- **f.** $|3x 7| \ge 1$
- 17 Vrai ou faux ? Justifier.
- **a.** Pour tout $k \in \mathbb{Z}$, |k| = -k.
- **b.** Pour tout $n \in \mathbb{Z}$, $|n^2 2n| = n^2 2n$.
- **c.** Pour tout $n \in \mathbb{N}$, $|n^2 n| = n^2 n$.
- 18 On définit la fonction **myst** ci-dessous.

Définir myst(x): $y \leftarrow 3x - 2$ Si $y \ge 0$ alors Renvoyer y Sinon Renvoyer -y

- **a.** Que valent $\mathbf{myst}(5)$ et $\mathbf{myst}(1)$?
- **b.** Exprimer $\mathbf{myst}(x)$ en fonction de x.