Les moyennes en mathématiques

1. Les diverses moyennes

* Moyenne arithmétique

1. Un élève a obtenu deux notes : 9 et 13. Quelle est sa moyenne ?

La **moyenne arithmétique** de deux réels a et b est $m = \frac{a+b}{2}$.

- **2.** Un élève a obtenu cinq notes : 7, 12, 9, 7, 11. Une sixième note est prévue.
 - **a.** Quelle doit être cette note pour avoir 10 de moyenne? 11 de moyenne?
 - **b.** Peut-il espérer avoir 12 de moyenne ?
- **3.** Julien effectue un trajet à vélo de 2 heures. Il roule la première heure à une vitesse moyenne de 15 km/h puis la seconde heure à une vitesse moyenne de 19 km/h.
 - **a.** Quelle distance a-t-il parcourue sur les 2 heures ? En déduire la vitesse moyenne sur le trajet total.
 - **b.** Plus généralement, si l'on effectue deux trajets ayant la même durée, l'un à une vitesse moyenne V_1 , l'autre à une vitesse moyenne V_2 , montrer que la vitesse moyenne V_3 sur l'ensemble du trajet est la moyenne arithmétique de V_1 et V_2 .

***** Moyenne harmonique

- **1.** Julien, qui habite Carcassonne, décide l'aller à Bram à pied ; 20 km séparent les deux villes. Il couvre la distance à une vitesse de 4 km/h. Pour revenir à Carcassonne, il s'est fait prêter un vélo. Il effectue le trajet à une vitesse de 16 km/h.
 - a. Quelle est la longueur totale du trajet?
 - **b.** Calculer le temps de l'aller, puis le temps du retour.

- c. En déduire la vitesse moyenne sur l'aller-retour.
- **d.** La vitesse moyenne est-elle la moyenne arithmétique des deux vitesses ?
- **e.** Vérifier l'égalité : $\frac{1}{6,4} = \frac{1}{2} \left(\frac{1}{4} + \frac{1}{16} \right)$.

La **moyenne harmonique** de deux réels a et b strictement positifs est le réel b défini par $\frac{1}{b} = \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right)$ ou $\frac{2}{b} = \frac{1}{a} + \frac{1}{b}$.

La moyenne harmonique de deux réels est donc l'inverse de la moyenne arithmétique de leur inverse.

2. Plus généralement, soit un trajet de D km, effectué à l'aller à une vitesse V_1 et au retour à une vitesse V_2 .

Montrer que la vitesse sur l'aller-retour est donnée par la moyenne harmonique des deux vitesses V_1 et V_2 , et ne dépend pas de D.

3. Montrer que $h = \frac{2ab}{a+b}$.

❖ Moyenne géométrique

On considère un rectangle de côté 5 cm et 9,8 cm.

On veut construire un carré ayant la même aire que ce rectangle. Calculer la dimension d'un côté de ce carré.

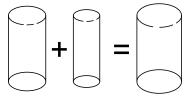
La moyenne géométrique de deux réels a et b positifs est le réel $g = \sqrt{ab}$.

Plus généralement, montrer que le côté d'un carré ayant la même aire qu'un rectangle de côté a et b est la moyenne géométrique de a et b.

❖ Moyenne quadratique

1. (Problème des cordes). On possède deux cordes, l'une de rayon 1,2 cm, l'autre de rayon 2 cm.

On se demande quel devrait être le rayon d'une corde qui offrirait la même



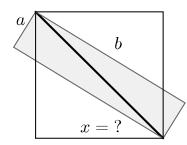
résistance que ces deux cordes, c'est-à-dire quel est le « rayon moyen » de ces cordes.

On conçoit que la résistance est proportionnelle à la section de la corde.

a. Calculer la section de chacune des cordes et en déduire que le rayon R de la corde cherché est $\sqrt{2,72}$.

La **moyenne quadratique** de deux réels a et b est le réel $q=\frac{\sqrt{a^2+b^2}}{2}$.

- **b.** Montrer plus généralement que le rayon moyen de deux cordes de rayon R_1 et R_2 est la moyenne quadratique de ces rayons.
- 2. On considère un rectangle de côté a et b et un carré de côté x.
 - **a.** Quelle est la longueur des diagonales du rectangle et du carré ?
 - **b.** En déduire *x* pour que le rectangle et le carré ait les diagonales de même longueur.
 - **c.** Conclure en une phrase utilisant « moyenne quadratique ».



2. Comparaison des moyennes

Dans la suite on considère des réels <u>a et b</u> positifs avec $a \le b$. Compléter le tableau suivant en arrondissant à 10^{-2} si nécessaire.

	а	1	2	6	40	0,001
	b	2	8	12	120	1000
Moyennes	géométrique g					
	harmonique h					
	arithmétique <i>m</i>					
	quadratique q					

Émettre une conjecture sur le classement des réels a, b, g, h, m, q.

Encadrement des moyennes

Méthodes de comparaison de deux nombres

On se donne deux nombres x et y et on veut savoir lequel des deux est le plus grand. On calcule la différence x - y,

- $\operatorname{si} x y \ge 0 \operatorname{alors}$...
- $\operatorname{si} x y \le 0 \operatorname{alors}$...
- **a.** On souhaite par exemple montrer que $a \le m$. Compléter :

Or $b - a \ge 0$ car . . . Finalement m - a . . . et donc . . . Faire le même raisonnement pour prouver que $m \le b$.

- **b.** Montrer que $h a = \frac{a(b-a)}{a+b}$. Donner le signe de chacun des trois termes intervenants : a, b a et a + b. En déduire le signe de h a et enfin que $a \le h$. Démontrer de même que $h \le b$.
- **c.** Calculer g a. Quel problème rencontre-t-on pour étudier le signe ?

Méthodes de comparaison de deux nombres par leur carré

Il faut connaître la propriété suivante : deux réels <u>positifs</u> x et y sont classés dans le même ordre que leur carré.

Par exemple
$$\sqrt{7} < 3 \operatorname{car} (\sqrt{7})^2 = 7, 3^2 = 9 \operatorname{et} 7 < 9.$$

Ainsi au lieu de comparer g et a, qui sont deux nombres positifs, on va comparer g^2 et a^2 .

Montrer que $g^2 - a^2 = a(b - a)$. En déduire le classement de g^2 et a^2 puis de g et a.

Déterminer par la même méthode le classement de g et b.

d. Montrer que $q^2 - a^2 = \frac{(b-a)(b+a)}{2}$ et conclure sur le classement de q et a. Recommencer avec q et b.

Conclusion partielle : la moyenne de deux réels est toujours comprise entre ces deux réels.

***** Comparaison des moyennes

- **a.** Montrer que $m h = \frac{(a-b)^2}{2(a+b)}$. En déduire que $m \ge h$.
- **b.** Montrer que $g^2 = mh$. Ainsi la moyenne géométrique de deux réels est la moyenne géométrique de leur moyenne arithmétique et harmonique. Il en résulte donc d'après la partie précédent que ... $\leq g \leq ...$
- **c.** Montrer que $q^2 m^2 = \frac{(a-b)^2}{4}$. En déduire que $q \ge m$.

Conclusion. On a le classement $a \le ... \le ... \le ... \le b$.

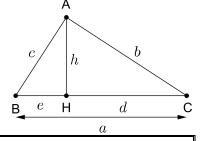
3. Interprétation géométrique des moyennes

❖ Un résultat de géométrie

Nous allons d'abord montrer deux formules dans un triangle rectangle.

Soit *ABC* un triangle rectangle en *A* et *H* le pied de la hauteur issue de *A*.

Soit
$$a = BC$$
, $b = AC$, $c = AB$, $d = CH$, $e = BH$ et $h = AH$.



Théorème. On a $h^2 = d \times e$ et $c^2 = a \times e$.

Les questions suivants permettent de démontrer ce théorème.

- 1. À l'aide du théorème de Pythagore dans les triangles ABH et ACH, justifier que l'on a $2h^2 = b^2 + c^2 d^2 e^2$.
- **2.** En déduire que $2h^2 = a^2 d^2 e^2$.
- **3.** En remarquant que a = d + e, conclure que $h^2 = de$.
- **4.** En appliquant le théorème de Pythagore dans le triangle ABH, montrer alors que $c^2 = a \times e$.

❖ Les quatre moyennes sur un seul dessin

Considérons un segment [RS] de milieu A et G un point du segment [AS]. On pose a = GS et b = GR.

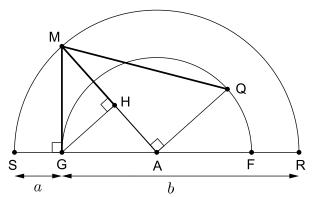
On trace

- le demi-cercle Γ de centre A passant par S;
- le demi-cercle Γ' de centre A passant par G.

On construit les points suivants :

- M le point d'intersection de Γ avec la perpendiculaire à (RS) passant par G;
- Q le point d'intersection de Γ' avec la perpendiculaire à (AM) passant par A;
- H le point d'intersection de (AM) avec la perpendiculaire à (AM) passant par G.

À l'aide du théorème précédent, nous allons montrer que les longueurs MA, MG, MQ et MH sont respectivement les moyennes arithmétique, géométrique, quadratiques et harmoniques des longueurs a et b.



- **1.** Calculer MA en fonction de a et b.
- 2. À l'aide du théorème, calculer MG en fonction de a et b.
- 3. Montrer que le rayon de Γ' est $\frac{b-a}{2}$ et en déduire la longueur MQ.
- **4.** À l'aide du théorème, calculer MH en fonction de a et b.
- 5. Justifier que MH < MG < MA < MQ (indication : quel est le plus long côté d'un triangle rectangle ?).