Suites numériques

1. Rappels sur les suites

Définition. Une <u>suite numérique</u> u, notée plus souvent (u_n) est une fonction dont la variable est un entier naturel. L'image d'un entier n n'est pas notée u(n) mais u_n et se lit « u indice n ». On dit que u_n est le <u>terme général</u> de la suite et que n est le <u>rang</u> de ce terme.

Les manières les plus courantes de définir une suite sont les suivantes.

➤ Par une fonction

On se donne une fonction f, la suite est définie par $u_n = f(n)$. On peut facilement calculer n'importe quel terme de la suite.

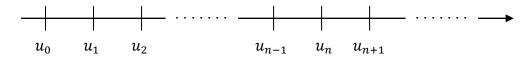
Exemple

Soit la suite $(u_n)_{n\geq 1}$ définie par $u_n=\frac{1}{n}$. On a par exemple $u_{100}=\frac{1}{100}$. Soit la suite $(v_n)_{n\geq 0}$ définie par $u_n=2n+1$. C'est la suite des entiers naturels impairs. Ses termes sont 1, 3, 5 etc.

> Par une relation de récurrence

Une suite est définie par récurrence quand elle est définie par la donnée :

- de son premier terme ;
- d'une relation qui permet de calculer un terme à partir du précédent. Cette relation est appelée relation de récurrence.



Exemple

Soit la suite $(u_n)_{n\geq 0}$ définie par $u_0=8$ et $u_{n+1}=0.5u_n+5$ pour $n\geq 0$. La relation de récurrence doit être pensée comme « un terme est égal à 0,5 fois celui d'avant, plus 5 ».

On a $u_1 = 0.5u_0 + 5 = 9$, $u_2 = 0.5u_1 + 5 = 9.5$, $u_3 = 0.5u_2 + 5 = 9.75$ etc.

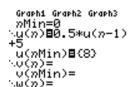
Si l'on veut calculer u_{10} , on est obligé de calculer tous les termes précédents. On apprendra à se « débarrasser de la récurrence » plus loin dans le chapitre dans certains cas. Pour cette suite, on montrera que $u_n = 10-2\times0,5^n$ pour tout n. Ainsi par exemple on a $u_8 = 10-2\times0,5^8\approx9,992$, sans devoir calculer u_8 , u_7 etc.

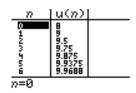
On va utiliser la calculatrice TI pour calculer les termes de la suite.

Il faut d'abord mettre la calculatrice en mode suite en appuyant sur <u>mode</u> puis en choisissant Suit. La touche f(x) permet alors d'accéder à l'éditeur de suites.

Le plus petit indice est n Min (ici 0), et u (n Min) est u_0 (ici 8). La relation de récurrence doit être entrée sous la forme $u_n = f(u_{n-1})$ et non $u_{n+1} = f(u_n)$, c'est-à-dire dans ce cas $u_n = 0.5u_{n-1} + 5$. Le u s'obtient en faisant 2n de 7 et n par x,t,θ,n . On écrira u (n-1) à la place de u_{n-1} .

Les valeurs de la suite s'obtiennent ensuite dans la table en ayant réglé le début de la table à 0, avec un pas de 1 (il ne faut pas oublier que n est un entier).





❖ Sens de variation

Définition. La suite (u_n) est dite <u>décroissante</u> si pour tout n, $u_{n+1} \le u_n$

La suite (u_n) est dite <u>croissante</u> si pour tout $n, u_{n+1} \ge u_n$

La suite (u_n) est dite <u>constante</u> si pour tout n, $u_{n+1} = u_n$

La suite (u_n) est dite monotone si elle est croissante, décroissante ou constante.

Suites arithmétiques

Définition. Une suite (u_n) est dite <u>arithmétique</u> si chaque terme se déduit du précédent en ajoutant une constante r appelé <u>raison</u> de la suite.

Une suite arithmétique vérifie la relation de récurrence $u_{n+1} = u_n + r$.

Théorème. Soit n un entier naturel. On a $u_n = u_0 + nr$.

Théorème. Soit (u_n) une suite arithmétique de raison $r \neq 0$.

- Si r > 0, la suite (u_n) est croissante ;
- si r < 0, la suite (u_n) est décroissante.

2. Suites géométriques

Définition. Une suite (u_n) est dite <u>géométrique</u> si chaque terme se déduit du précédent en multipliant par une constante q appelé <u>raison</u> de la suite.

Une suite géométrique vérifie la relation de récurrence $u_{n+1} = qu_n$.

Exemple

Au 1^{er} janvier 2010, on a placé une somme de $c_0 = 1000 \in à$ intérêts annuels de 2 %.

En notant c_n le capital acquis au 1^{er} janvier de l'année 2010 + n, on voit que

$$c_{n+1} = \left(1 + \frac{2}{100}\right)c_n = 1,02c_n.$$

Par exemple le capital au 1^{er} janvier 2011 était $c_1 = 1,02 \times 1000 = 1020$, puis au 1^{er} janvier 2012 il était de $c_2 = 1,02 \times 1020 = 1040,4$ etc.

Exemple

Considérons la suite définie par $u_n = -3 \times 7^n$ pour $n \ge 0$.

Cette suite est géométrique de raison 7. En effet on peut écrire

$$u_{n+1} = -3 \times 7^{n+1} = -3 \times 7^n \times 7 = u_n \times 7.$$

Son premier terme est $u_0 = -3 \times 7^0 = -3$.

Une suite géométrique (u_n) vérifie une relation de récurrence, donc pour calculer un terme il faut connaître les précédents. En fait dans ce cas, on peut se « débarrasser de la récurrence », on dit « <u>exprimer u_n en fonction de n</u> », grâce au résultat suivant.

Théorème. Soit
$$(u_n)$$
 une suite géométrique de raison q . On a $u_n = u_0 \times q^n$ et $u_n = u_1 \times q^{n-1}$.

Exemple

Pour la suite des capitaux, on a $c_n = 1000 \times 1,02^n$. Ainsi au 1^{er} janvier 2025, on disposera d'un capital de $c_{15} = 1000 \times 1,02^{15} \approx 1346 \in$.

Somme de termes consécutifs

Théorème. Soit q un réel avec $q \neq 1$. Alors

$$1 + q + q^{2} + \dots + q^{n} = \frac{1 - q^{n+1}}{1 - q}.$$

Exemple

$$1+2+4+8+\cdots+2^{10} = \frac{1-2^{11}}{1-2} = 2^{11}-1 = 2047.$$

Exemple

Soit (u_n) la suite géométrique de raison 0,58 et de premier terme $u_0 = 3$. Calculons $u_0 + u_1 + \dots + u_{10}$. On sait que pour tout n, $u_n = 3 \times 0,58^n$ si bien que $u_0 + u_1 + \dots + u_{10} = 3 \times 0,58^0 + 3 \times 0,58^1 + \dots + 3 \times 0,58^{10} = 3(0,58^0 + 0,58^1 + \dots + 0,58^{10}) = 3 \times \frac{1-0,58^{11}}{1-0,58} \approx 7,16$

3. Limite d'une suite géométrique

❖ Notion de limite

Étudier la limite d'une suite c'est se demander ce que deviennent les nombres u_n lorsque n prend des valeurs de plus en plus grandes, on dit « lorsque n tend vers $+\infty$ ».

Plus précisément, on cherche à savoir si l'un des deux comportements suivants a lieu :

- Les nombres u_n finissent-ils par s'accumuler autour d'un nombre fixe ?
- Les nombres u_n finissent-ils par dépasser n'importe quel nombre fixé à l'avance, aussi grand que l'on veut? Autrement dit, u_n prend-il des valeurs de plus en plus grandes?

Exemple

Considérons la suite $(u_n)_{n\geq 1}$ définie par $u_n=\frac{1}{n}$. On constate que lorsque n tend vers $+\infty$, les termes de la suite sont de plus en plus proches de 0. On dit que la limite de la suite est 0, on écrit $\lim_{n\to +\infty} u_n=0$.

Exemple

Considérons la suite (v_n) définie par $v_n = n^2$. On constate que lorsque n tend vers $+\infty$, les termes de la suite sont de plus en plus grand. On dit que la limite de la suite est $+\infty$, on écrit $\lim_{n\to+\infty} u_n = +\infty$.

ightharpoonup Limite de la suite (q^n)

Théorème.

- Si 0 < q < 1, alors $\lim_{n \to +\infty} q^n = 0$;
- si q > 1, alors $\lim_{n \to +\infty} q^n = +\infty$.

Exemple

Considérons la suite définie par $u_n = 3 - 11 \times 0.73^n$. Comme 0 < 0.73 < 1, on a $\lim_{n \to +\infty} 0.73^n = 0$, donc $\lim_{n \to +\infty} u_n = 3 - 11 \times 0 = 3$.

4. Suites arithmético-géométriques

Définition. Une suite (u_n) est dite <u>arithmético-géométrique</u> si elle satisfait une relation de récurrence du type $u_{n+1} = au_n + b$ où a et b sont deux réels.

Remarque. Si b = 0, la suite est géométrique de raison a et si a = 1 la suite est arithmétique de raison b.

L'étude d'une suite arithmético-géométrique peut être ramenée à celle d'une suite géométrique par l'intermédiaire d'une suite auxiliaire. Les exercices seront toujours guidés.

Exemple

La suite (u_n) définie par $u_0 = 8$ et pour tout entier n, $u_{n+1} = 0.5u_n + 5$ est arithméticogéométrique.

- **1.** On pose $v_n = u_n 10$.
 - a. Montrer que la suite (v_n) est géométrique, donner sa raison et son premier terme.
 - **b.** En déduire v_n puis u_n en fonction de n.
- **2.** Montrer que pour tout n, on a $u_n \le 10$. Calculer la limite de (u_n) .

Réponse.

- 1. Remarquons déjà que la définition de v_n donne $u_n = v_n + 10$.
 - **a.** On a

$$v_{n+1} = u_{n+1} - 10$$
 (par définition de v_{n+1})
 $= 0.5u_n + 5 - 10$ (par définition de u_{n+1})
 $= 0.5u_n - 5$ (en factorisant par 0.5)
 $= 0.5(u_n - \frac{5}{0.5})$ (en factorisant par 0.5)
 $= 0.5(u_n - 10)$ (par définition de v_n)

Cela prouve que la suite (v_n) est géométrique de raison q=0,5. Son premier terme est $v_0=u_0-10=8-10=-2$.

- **b.** Comme (v_n) est géométrique avec q=0.5 et $v_0=-2$ on en déduit $v_n=v_0\times q^n=-2\times 0.5^n$. On a remarqué au début de la question que $u_n=v_n+10$, ainsi $u_n=-2\times 0.5^n+10=10-2\times 0.5^n$.
- 2. Comme pour tout n, on a $2 \times 0.5^n \ge 0$, on en déduit $u_n = 10 2 \times 0.5^n \le 10.$ Étant donné que 0 < 0.5 < 1, il vient $\lim_{n \to +\infty} 0.5^n = 0$ et par conséquent $\lim_{n \to +\infty} u_n = 10 2 \times 0 = 10.$

