Suites numériques - Partie 2

1. Théorèmes de comparaison

Théorème 1 (de comparaison). Soit (u_n) et (v_n) deux suites telles que $u_n \le v_n$ à partir d'un certain indice. Si $\lim_{n \to +\infty} u_n = +\infty$ alors $\lim_{n \to +\infty} v_n = +\infty$.

Démonstration. Soit A un réel. Comme $\lim_{n\to+\infty}u_n=+\infty$, il existe un entier n_1 tel que $n\geq n_1\Rightarrow u_n\geq A$.

Par hypothèse, il existe un entier n_2 tel que $n \ge n_2 \Rightarrow u_n \le v_n$. Soit N un entier supérieur à n_1 et n_2 . Alors pour tout $n \ge N$, on a $v_n \ge A$.

Théorème 2 (de comparaison). Soit (u_n) et (v_n) deux suites telles que $u_n \le v_n$ à partir d'un certain indice. Si $\lim_{n \to +\infty} v_n = -\infty$ alors $\lim_{n \to +\infty} u_n = -\infty$.

Théorème 3 (des gendarmes). Soit (u_n) , (v_n) et (w_n) trois suites telles que $u_n \le v_n \le w_n$ à partir d'un certain indice. Si $\lim_{n \to +\infty} u_n = \ell$ et $\lim_{n \to +\infty} w_n = \ell$ alors $\lim_{n \to +\infty} v_n = \ell$.

Exemple

Soit la suite (u_n) définie pour tout $n \ge 1$ par $u_n = \frac{(-1)^n}{n}$. Puisque $(-1)^n$ vaut soit 1, soit -1, on peut écrire $-1 \le (-1)^n \le 1$, d'où $-\frac{1}{n} \le u_n \le \frac{1}{n}$. Comme $\lim_{n \to +\infty} -\frac{1}{n} = 0$ et $\lim_{n \to +\infty} \frac{1}{n} = 0$, on déduit du théorème des gendarmes que (u_n) converge et $\lim_{n \to +\infty} u_n = 0$.

Corollaire 4. Si $(|u_n|)$ converge vers 0, il en de même de (u_n) .

Démonstration. Pour tout réel x, on a $-|x| \le x \le |x|$. En effet si $x \ge 0$, comme |x| = x, l'inégalité équivaut à $-x \le x \le x$, qui est clairement vraie. De même si $x \le 0$, on a |x| = -x et l'inégalité annoncée équivaut à $x \le x \le -x$, ce qui est vérifié.

Ici on a $-|u_n| \le u_n \le |u_n|$, donc le théorème des gendarmes montre que $\lim_{n \to +\infty} u_n = 0$.

2. Limite d'une suite géométrique

Voici une démonstration du résultat admis dans le premier chapitre sur les suites.

Théorème 10 (limite de q^n). Soit q un réel.

- ightharpoonup Si q > 1, $\lim_{n \to +\infty} q^n = +\infty$;
- ightharpoonup si q=1, la suite (q^n) est constante égale à 1;
- $> \sin|q| < 1, \lim_{n \to +\infty} q^n = 0 ;$
- ightharpoonup si $q \le -1$, la suite (q^n) n'a pas de limite.

Démonstration.

Si q = 1, le résultat est évident. Si q < -1, les termes de la suite sont de plus en plus grands en valeur absolue, et l'alternance des signes les empêche de « se stabiliser ». Si q = -1, la suite prend alternativement les valeurs -1 et 1, donc n'admet pas de limite.

- 1. Supposons q > 1. Alors on peut écrire q = 1 + h où h est un réel strictement positif. Montrons par récurrence sur n que l'on a $q^n \ge 1 + nh$ pour tout $n \ge 0$ (cette inégalité fréquemment rencontrée s'appelle « inégalité de Bernoulli).
 - Initialisation. On a $q^0 = 1$ et $1 + 0 \times h = 1$, donc l'inégalité est vraie pour n = 0.
 - **Hérédité.** Supposons que l'inégalité soit vraie pour un entier $k \ge 0$, c'est-à-dire que $q^k \ge 1 + kh$. Alors

$$q^{k+1} = q^k \times q \ge (1 + kh)(1 + h) = 1 + kh + h + kh^2 = 1 + (k+1)h + kh^2$$

 $\ge 1 + (k+1)h,$

La dernière inégalité résultant du fait que $kh^2 \ge 0$. Cela prouve l'hérédité.

• Conclusion. L'inégalité est vraie pour n=0 et est héréditaire, donc d'après le théorème de récurrence, elle est vraie pour tout entier $n \ge 0$.

Comme
$$\lim_{n \to +\infty} (1 + nh) = +\infty$$
 (car $h > 0$), par comparaison il vient $\lim_{n \to +\infty} q^n = +\infty$.

2. Supposons maintenant |q| < 1. Si q = 0, on a $\lim_{n \to +\infty} q^n = 0$ puisque la suite est nulle à partir du deuxième terme.

Supposons dorénavant $q \neq 0$. On va montrer que $|q^n|$ tend vers 0, ce qui suffit à montrer qu'il en de même de q^n d'après le corollaire 4.

Pour cela il suffit de démontrer que son inverse, $\frac{1}{|q^n|}$ tend vers $+\infty$ vu que $|q^n| > 0$ pour tout $n \in \mathbb{N}$.

Comme 0 < |q| < 1, on a $\frac{1}{|q|} > 1$, donc d'après 1., la suite de terme général

$$\frac{1}{|q^n|} = \frac{1}{|q|^n} = \left(\frac{1}{|q|}\right)^n$$

a pour limite $+\infty$.

3. Théorème du point fixe

Définition. Soit f une fonction définie sur un ensemble E. On dit que E est <u>stable par f</u> si pour tout $x \in E$, on a $f(x) \in E$.

Théorème 5 (du point fixe). Soit f une fonction continue sur un ensemble E stable par f et soit (u_n) une suite vérifiant $u_{n+1} = f(u_n)$.

Si (u_n) converge, alors sa limite est solution de l'équation f(x) = x.

Remarque. L'existence d'une solution à l'équation f(x) = x ne montre pas la convergence de la suite. Ce théorème permet d'obtenir des informations sur la limite d'une suite **une fois que sa convergence a été prouvée**, par exemple en utilisant le théorème de convergence monotone que l'on verra au paragraphe suivant.

Exemple

Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = \frac{3x}{2x+1}$.

Il est clair que si $x \ge 0$, alors $f(x) \ge 0$, donc l'intervalle $[0; +\infty[$ est stable par f et la suite donnée par

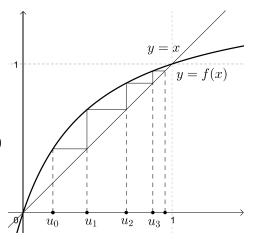
$$u_0 = 0.2$$
 et, pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$

est bien définie.

La représentation graphique de la suite laisse penser qu'elle vers converge vers l'abscisse d'un point d'intersection de la courbe de f avec la droite d'équation y = x. Résolvons l'équation f(x) = x.

$$f(x) = x \Leftrightarrow \frac{3x}{2x+1} = x \Leftrightarrow 2x^2 + x = 3x$$
$$\Leftrightarrow 2x^2 - 2x = 0 \Leftrightarrow 2x(x-1) = 0$$

Ainsi, **si la suite converge**, le théorème du point fixe montre que sa limite ne peut être que 0 ou 1. Nous n'avons pas prouvé que la suite converge à ce stade-là.



Exemple

Soit f la fonction définie sur]-1; $+\infty$ [par $f(x) = \frac{3-x}{x+1}$. L'intervalle]-1; $+\infty$ [est stable par f car

$$f(x) - (-1) = \frac{3-x}{x+1} + 1 = \frac{2}{x+1}$$

si bien que:

$$x > -1 \Rightarrow x + 1 > 0 \Rightarrow \frac{2}{x + 1} > 0 \Rightarrow f(x) - (-1) > 0 \Rightarrow f(x) > -1.$$

Ainsi la suite donnée par

$$u_0 = 3$$
 et, pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{3-u_n}{u_n+1}$

est bien définie. Cette suite est très simple, elle est périodique de période 2 : $u_0 = 3$, $u_1 = 0$, $u_2 = 3$, $u_3 = 0$, etc. Elle n'est donc pas convergente, et pourtant l'équation f(x) = x admet des solutions, à savoir 1 et -3.

4. Convergence d'une suite monotone

Définition

- Une suite (u_n) est dite <u>majorée</u> s'il existe M tel que pour tout $n \in \mathbb{N}$, on a $u_n \leq M$.
- Une suite (u_n) est dite <u>minorée</u> s'il existe m tel que pour tout $n \in \mathbb{N}$, on a $u_n \ge m$.
- Une suite (u_n) est dite <u>bornée</u> si elle est minorée et majorée.

Exemple

- La suite de terme général (−1)ⁿ est majorée par 1 et minorée par −1, elle est donc bornée.
- Soit (v_n) la suite définie par $v_n = 3 \frac{1}{n}$ pour $n \ge 1$. On a

$$n \ge 1 \Rightarrow \frac{1}{n} \le 1 \Rightarrow -\frac{1}{n} \ge -1 \Rightarrow 3 - \frac{1}{n} \ge 3 - 1 \Rightarrow v_n \ge 2$$

et clairement $v_n \le 3$. On peut donc écrire $2 \le v_n \le 3$, la suite est bornée.

• La suite définie par $u_n = \sqrt{n}$ est minorée par 0, mais pas majorée. En effet, si M est un majorant (nécessairement positif), en considérons un entier n_0 tel que $n_0 > M^2$, on aura $u_{n_0} = \sqrt{n_0} > \sqrt{M^2} = M$ et donc M n'est pas un majorant de (u_n) .

Théorème 6. Une suite croissante non majorée a pour limite $+\infty$.

Démonstration. Soit (u_n) une suite croissante non majorée et A un réel. Puisque A ne majore pas (u_n) , il existe n_0 tel que $u_{n_0} \ge A$, donc, par croissante de (u_n) , pour tout $n \ge n_0$, on a $u_n \ge u_{n_0} \ge A$, ce qui signifie par définition $\lim_{n \to +\infty} u_n = +\infty$.

Théorème 7.

- Si une suite est croissante et admet une limite finie, elle est majorée par cette limite.
- Si une suite est décroissante et admet une limite finie, elle est minorée par cette limite.

Démonstration. Soit (u_n) une suite croissante de limite ℓ . Raisonnons par l'absurde et supposons qu'il existe un entier n_0 tel que $u_{n_0} > l$.

Comme (u_n) est croissante, on en déduit que pour $n \ge n_0$ on a $u_n \ge u_{n_0} > l$.

En prenant la limite dans cette inégalité, il vient $\ell \ge u_{n_0} > l$, ce qui est absurde. Il en résulte bien que pour tout $n, u_n \le \ell$.

Soit (u_n) une suite décroissante de limite ℓ . La suite $(-u_n)$ est croissante et converge vers $-\ell$, donc, d'après la première partie de la démonstration, pour tout $n \in \mathbb{N}$, $-u_n \le -\ell$, soit $u_n \ge \ell$, ce qui prouve que (u_n) est minorée par sa limite.

Théorème 8 (de convergence monotone).

- Une suite croissante et majorée converge.
- Une suite décroissante et minorée converge.

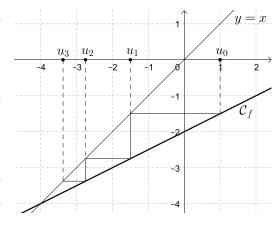
Remarque. Un majorant (ou minorant) de la suite n'est pas nécessairement sa limite. Par exemple la suite (u_n) définie par $u_n = \frac{1}{n}$ est décroissante, minorée par 0, donc elle converge, en l'occurrence vers 0 comme le sait. Mais cette suite est également minorée par -500 (ou par n'importe quel autre réel négatif) qui n'est pas la limite de (u_n) pour autant.

Exemple

Considérons la suite définie par $u_0 = 1$ et $u_{n+1} = \frac{1}{2}u_n - 2$. Soit f la fonction affine définie par $f(x) = \frac{1}{2}x - 2$; on a $u_{n+1} = f(u_n)$.

Montrons par récurrence la propriété : pour tout $n \in \mathbb{N}$, on a $-4 \le u_{n+1} \le u_n$.

- Initialisation. C'est vrai pour n = 0 puisque $u_0 = 1$ et $u_1 = -\frac{3}{2}$.
- **Hérédité.** Supposons la propriété vraie pour un entier $k \ge 0$. Comme la fonction f est croissante sur \mathbb{R} ,



$$-4 \le u_{k+1} \le u_k \Rightarrow f(-4) \le f(u_{k+1}) \le f(u_k) \Rightarrow -4 \le u_{k+2} \le u_{k+1}$$

• Conclusion. La propriété est vraie pour n = 0 et est héréditaire, donc d'après le théorème de récurrence, elle est vraie pour tout entier $n \ge 0$.

On a donc prouvé que pour tout entier n on a d'une part $-4 \le u_n$, c'est-à-dire que (u_n) est minorée, et d'autre part que $u_{n+1} \le u_n$, c'est-à-dire que (u_n) est décroissante (alors que f est croissante!). Ainsi cette suite est convergente d'après le théorème de convergence monotone. D'après le théorème du point fixe, sa limite ℓ vérifie l'égalité $f(\ell) = \ell$, soit $\ell = \frac{1}{2}\ell - 2$, d'où $\ell = -4$.

Exemple

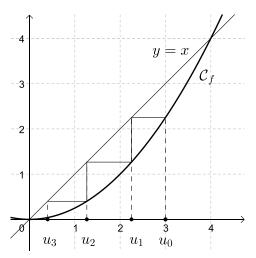
Soit (u_n) la suite définie par

$$u_0 = 3$$
 et $u_{n+1} = \frac{1}{4}u_n^2$

 $u_0=3 \ {\rm et} \ u_{n+1}=\frac{1}{4}u_n^2.$ En appelant f la fonction définie sur $\mathbb R$ par $f(x) = \frac{1}{4}x^2$, on a $u_{n+1} = f(u_n)$.

Montrons par récurrence la propriété : pour tout $n \in \mathbb{N}, 0 \le u_{n+1} \le u_n \le 3.$

- Initialisation. C'est vrai pour n = 0 puisque $u_0 = 3$ et $u_1 = \frac{9}{4}$.
- Hérédité. Supposons la propriété vraie pour un entier $k \ge 0$. Sur $[0; +\infty[$, on a $f'(x) = \frac{1}{4} \times$ $2x = \frac{1}{2}x \ge 0$, donc f est croissante sur cet intervalle, d'où



$$0 \le u_{k+1} \le u_k \le 3 \Rightarrow f(0) \le f(u_{k+1}) \le f(u_k) \le f(3) \Rightarrow 0 \le u_{k+2} \le u_{k+1} \le \frac{9}{4}$$
, et $0 \le u_{k+2} \le u_{k+1} \le 3$.

Conclusion. La propriété est vraie pour n=0 et est héréditaire, donc d'après le théorème de récurrence, elle est vraie pour tout entier $n \geq 0$.

On a donc prouvé que pour tout entier n on a d'une part $0 \le u_n \le 3$, ce qui implique en particulier que (u_n) est minorée, et d'autre part que $u_{n+1} \le u_n$, c'est-à-dire que (u_n) est décroissante (alors que f est croissante!). Il résulte du théorème de convergence monotone que cette suite converge vers un réel ℓ qui d'après le théorème du point fixe vérifie :

$$f(\ell) = \ell \Leftrightarrow \ell = \frac{1}{4}\ell^2 \Leftrightarrow 4\ell = \ell^2 \Leftrightarrow 4\ell - \ell^2 = 0 \Leftrightarrow \ell(4-\ell) = 0.$$

On en déduit $\ell \in \{0,4\}$. En passant à la limite dans l'inégalité $0 \le u_n \le 3$, il vient $0 \le \ell \le 3$, d'où finalement $\ell = 0$.

Modifions à présent le premier terme en prenant $u_0 = 5$. On monterait par récurrence que $5 \le u_n \le u_{n+1}$, donc que (u_n) est croissante. Si la suite était majorée, elle serait convergente vers un réel ℓ vérifiant $\ell \geq 5$. Mais comme les seules valeurs possibles de ℓ sont 0 et 4, cela amène à une contradiction. Ainsi (u_n) n'est pas majorée, et comme elle est croissante, le théorème 6 montre que (u_n) diverge vers $+\infty$.

On retiendra qu'en changeant uniquement le premier terme de la suite, on a obtenu deux comportements radicalement opposés pour son comportement quand n tend vers $+\infty$.

Exemple

Soit f la fonction définie sur]0; + ∞ [par $f(x) = \frac{1}{2}(x + \frac{2}{x})$. Pour tout x > 0, on a f(x) > 0 (autrement dit]0; $+\infty$ [est stable par f), donc la suite (u_n) donnée par

$$u_0 = 2 \text{ et } u_{n+1} = \frac{1}{2} \left(u_n + \frac{2}{u_n} \right)$$

est bien définie.

Résolvons l'équation f(x) = x. Pour tout x > 0,

$$f(x) = x \Leftrightarrow \frac{1}{2}\left(x + \frac{2}{x}\right) = x \Leftrightarrow 2x = x + \frac{2}{x} \Leftrightarrow x = \frac{2}{x} \Leftrightarrow x^2 = 2.$$

Sur l'intervalle $]0; +\infty[$, l'équation f(x) = x a donc pour solution $\sqrt{2}$.

Montrons par récurrence la propriété : pour tout $n \in \mathbb{N}, \sqrt{2} \le u_{n+1} \le u_n$.

Initialisation. Pour n = 0, elle est vraie car $u_0 = 2$ et $u_1 = \frac{3}{2}$.

- **Hérédité.** Supposons la propriété vraie pour un entier $k \ge 0$. On a $f'(x) = \frac{x^2 2}{2x^2}$, donc $f'(x) \ge 0$ sur $[\sqrt{2}; +\infty[$ ce qui montre que f est croissante sur $[\sqrt{2}; +\infty[$ d'où $\sqrt{2} \le u_{k+1} \le u_k \Rightarrow f(\sqrt{2}) \le f(u_{k+1}) \le f(u_k)$.
 - On a montré ci-dessus que $f(\sqrt{2}) = \sqrt{2}$, donc on obtient $\sqrt{2} \le u_{k+2} \le u_{k+1}$, ce qui prouve que la propriété est héréditaire.
- Conclusion. La propriété est vraie pour n=0 et est héréditaire, donc d'après le théorème de récurrence, elle est vraie pour tout entier $n \ge 0$.

La suite (u_n) est décroissante et minorée par $\sqrt{2}$ donc elle converge d'après le théorème de convergence monotone. D'après le théorème du point fixe, elle converge vers une solution de l'équation f(x) = x sur]0; $+\infty[$, c'est-à-dire vers $\sqrt{2}$.

La convergence de cette suite est très rapide comme on peut le constater par le calcul des premiers termes où l'on a mis en gras les décimales exactes obtenues pour $\sqrt{2}$.

$$u_0 = 2$$
 $u_1 = \frac{3}{2} = 1,5$
 $u_2 = \frac{17}{12} \approx 1,4166666666667$
 $u_3 = \frac{577}{408} \approx 1,4142156862745$
 $u_4 = \frac{665857}{470832} \approx 1,4142135623747$

Il est clair que la suite (u_n) est une suite de nombres rationnels. Cet exemple montre donc que le théorème de converge de monotone est faux dans \mathbb{Q} : (u_n) est une suite décroissante et minorée (par exemple par 1) de \mathbb{Q} mais qui ne converge pas dans \mathbb{Q} puisqu'il est bien connu que $\sqrt{2} \notin \mathbb{Q}$.